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Abstract. It is proposed that the method of keeping the subsidiary conditions separate from 
the equations of motion in a consistent way by means of a Lagrange multiplier may be the 
solution to the various pathologies afflicting high-spin field theories. The distinct features of 
this approach are discussed with reference to a massive spin-; field. It is shown that in this 
formulation there is no causality violation for propagation in an external field and the energy 
spectrum in a homogeneous magnetic field is real. Quantization is carried out in a Hilbert 
space with indefinite metric. For minimal electromagnetic interaction a unitary S matrix is 
constructed by introducing a fictitious particle and an additional vertex. 

1. Introduction 

The problem of formulating a consistent field theory of high-spin particle (spin s 2 1) 
interactions is still an unsolved one. Johnson and Sudarshan (1961) were the first to 
observe an anomaly in the quantization of a spin-; field in the presence of an external 
electromagnetic field. After the pioneering work of Velo and Zwanziger (1969a, b), 
which demonstrated acausal propagation in classical versions of interacting high-spin 
field theories, further investigations by a number of workers have revealed the existence 
of a variety of maladies afRicting high-spin field theory at the classical as well as the 
quantized level (Shamaly and Capri 1972, Jenkins 1973a, b, c, d, Singh 1973). Loss of 
constraints, breakdown of Lorentz covariance, and appearance of imaginary energy 
eigenvalues are, aside from causality violation, forms of pathologies which haunt 
high-spin field theories (Velo and Zwanziger 1969b, Velo 1972, Nath et a1 1971, 
Jenkins 1974, Babu Joseph and Sabir 1976a, b, Tsai and Yildiz 1971, Mathews and 
Seetharaman 1973). Recently wme suggestions have arisen as to possible ways of 
curing high-spin field theory of its inherent maladies (Velo 1972, Fukuyama and 
Yamamoto 1973, Prabhakaran et a1 1975). In this paper we explore the possibility of 
eliminating the pathological behaviour of high-spin field theory by introducing a 
Lagrange multiplier formalism. 

In the conventional formulation, the subsidiary conditions required for the elimina- 
tion of redundant components are derived along with the equations of motion by the 
variation of a Lagrangian. These constraint relations, as a rule, get modified when 
interaction terms are introduced into the Lagrangian. We propose that the alternative 
of keeping the subsidiary conditions separate from the equations of motion in a 
consistent way by means of a Lagrange multiplier may be a solution to the above 
mentioned pathologies of high-spin field theories. Nakanishi, Hsu and Sudarshan 
(Nakanishi 1972, Hsu 1974a, b, Hsu and Sudarshan 1974) have made use of a Lagrange 
multiplier formalism to construct manifestly renormalizable theories of massive vector 
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fields and massive and massless Yang-Mills fields. But our motivation has a different 
origin. We try to take into account the existence of constraint relations from the very 
outset and these constraint relations are kept away from the influence of interactions 
which otherwise lead to troubles of various sorts. 

The distinct features of the method outlined above are illustrated below with 
reference to a spin-; field. In 0 2 we set up the Lagrange ,multiplier formalism for a 
massive spin-; field. Quantization of the field is carried out in 0 3 .  In 9 4 we 
demonstrate the absence of the usual pathologies in the suggested framework when the 
interaction with an electromagnetic field is introduced. Then 9 5 deals with the question 
of unitarity of the S matrix in this formalism, and 0 6  sums up the advantages and 
limitations of the present approach. 

2. Formulation 

We choose to describe a spin-? field by means of a 16-component vector-spinor $, 
(spinor index suppressed). The most general Lagrangian leading to an equation of 
motion that gives up to first derivatives has the form 

2 = $,(X)A,~$~(X) (1) 

A,, = -(ra+m)S,, -A(y,av + Y ~ ~ , ) - B Y , Y A ~ A Y ,  -Cmr,ry. (2) 

A +-; B = ; A ~ + A + ;  C =  -(3A2 + 3A + 1) ( 3 )  

with 

This Lagrangian with the conditions 

yields the Rarita-Schwinger formulation for the irreducible spin-; field which is known 
to be afflicted by troubles of different sorts when minimal electromagnetic interaction is 
introduced. 

In the present formulation we take (1) as the Lagrangian to start with. We now 
assume that there is a constraint relation between the 16 components of the field of the 
form 

Y,$, ( X I  = 0. (4) 
Unlike in the usual treatment, the Lagrangian (1) is varied under the assumption 

that the constraint relation (4) exists independently and it is incorporated into the 
Lagrangian by means of a Lagrange multiplier. The Lagrange multiplier thus intro- 
duced must be a function of space-time and hence may be treated as an additional field 
variable. The variation of the multiplier field in the Lagrangian yields the constraint 
relation a posteriori. The effective Lagrangian with the constraint incorporated is 

(5 )  Lf? = (cl, f L @ v  + 775Y,*, + 774iLYPt 

where the multiplier 5 must be a four-spinor for the Lagrangian to be a Lorentz- 
invariant and 77 is a real number. The resulting equations of motion are given by: 

[ (Ya+m)apA + A  ( Y w a A  + YA 8,) + By,yayA + CmYpYA ]@A = (6)  

(Y a + m M p  + AY, = ~ Y J .  (7) 

as well as equation (4). Because of equation (4), equation (6) reduces to 
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Multiplying equation (7) successively with y, and d, and making use of (4)  we obtain 
the relations 

(1+A)aA+A = 76 (8) 

+ ( I  +A)yadA+A = w 6 .  (9) 

(yd+M)(=(yd+M)dA+A = O  (10) 

When A # -1 we substitute equation (8) into equation (9) to derive 

where 

m 
M =  

l + A  -67 +AT’  

When A = -6, we have, from equation (8) 6 = 0 but from equation (9) we see that we 
can still derive the relation 

(yd+M)dA+A = 0. 

We therefore, have in our theory in addition to the spin-? particle of mass m a spin-; 
particle of mass M satisfying the Dirac equation. This becomes further evident from an 
inspection of the equations of motion in the rest frame as is done below. In the 
following, for the sake of convenience, we let 7 = 1, so that M = 2m. 

From equations (7), (8) and (9) we find 

( r a + m ) + ,  =6ypaA+A = ypt/(1+2A) (1 1) 

where the last equality holds if A # -1. The components of +, do not satisfy the 
Klein-Gordon equation, but equations (10) and (1 1) together yield 

( 0 - 4 m z ) ( y 8 + m ) + ,  = O  (12) 

and 

(0 - 4m 2 ) ( ~  - m *)$, = 0. 

From equation (1 1) and its conjugate, with the aid of equation (9), we can derive the 
conserved current 

In the present formulation the total charge is not positive definite. This fact may be 
demonstrated by examining equation (1  1) in the rest frame. Let - W ,  (k, E )  ei(k,X-Et) 
be the solution of equation (1 1) with positive energy. In the rest system with k = 0 
equation (1  1) becomes 

(-74E + m)w4 = - $ Y ~ E w ~ .  

( - 4 y 4 ~  + m ) w 4  = 0. (17) 

(16) 
For p = 4  we get 

If E = m ,  w4 will vanish identically as is the case in the Rarita-Schwinger theory. 
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However, our formulation also admits the value E = 2m, so w4 has non-vanishing 
components corresponding to this. The non-vanishing terms contribute negative terms 
in the expression (15) and the total charge becomes indefinite. 

Before turning to the problem of quantization we take a closer look at equation (16) 
with a view to identifying the different spin components. With p = i = 1 , 2 , 3  and E = m 
equation (1 6) becomes 

(-y4+ 1)Wi = 0. (18) 

This implies that only the lower components of w4 survive and these six components are 
reduced to four independent components by the constraint relation which now assumes 
the form 

u . v = o  (19) 

(-2y4 + 1 ) W i  = -;yiW4. (20) 

We may use this relation to express the non-vanishing components of wi in terms of 
w4 so that there are only two independent solutions corresponding to the value E = 2m, 
which together constitute the spin-$ part of the field. 

where oi is a two-component spinor. However, when E = 2m equation (16) becomes 

3. Quantization 

Since on the Lagrangian (5 )  4, are all varied independently, we can use the canonical 
quantization method to derive the commutation relations of field components. Canoni- 
cally conjugate momenta rcc of qP are 

rp = (L4IUcc (21) 

where (L4),, = y4Sccv + A  (yrrSU4 + yuS,4) + Bypy4y,. Standard canonical commutation 
relations are given by 

(22) 

(23) 

{*, (x),  ~ u ( x ‘ ) L o = x b  = iS,,S(X -x’) 

{*,W7 ((IY(”=*b = (L4);3S(x -x’>. 

from which it follows 

In the Rarita-Schwinger theory with the restriction (3)  L4 is singular and its inverse does 
not exist. When the conditions (3)  are not satisfied (LJ’ is given by 

(L4); ;=[ (1+2A +3A2-2B)y4S , , - (A2-A  -2B)(y,Su4+yu6,4) 

-2 (2A +A2+2B)y4S,,4Su4 

+(A2-B)y , y4y , ] / ( l  + 2 A  + 3 A 2 - 2 B ) .  (24) 
Since the parameters A and B are arbitrary we have the freedom to choose them in 

sucha way that the commutation relation (23) is consistent with the subsidiary condition 
(4) .  It is easy to verify that consistency is achieved if we choose A = -1 and B = a. With 
this choice the commutation relations may be written as 

{ep & (~ ’ ) )xo=xb  = [S,,y4 + b p y 4 ~ u  - (S,,Y, + LY, + 2yd,4~,4IS (X -x’>. (25) 
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The requirements of relativistic covariance, locality and equations (12) and (13) 
determine the general form of the commutator for arbitrary separation to be 

{*,(X), &(x% 
= -ai(ya-m)[S,,-Sy,y,, 1 + ; ( y r ~ , - y Y a , ) - ( 2 / 3 m 2 ) a , a , ] A ( x - x ‘ : m )  

+ bi(d, +$myp) (ya -2m)(&,  +amyv)A(x - x ‘ :  2m).  (26) 

In order that the above expression be consistent with the equal time commutation 
relations (25) we must take a = 1 and b = 2 /3m2.  We can use equations (26) and (8) 
with A = -1 to derive the further commutation relations 

{ [ ( x ) ,  (I/y(x’)} = -3i(ya-2m)(aU +bmy,)A(x - x ’ :  2m)  

27im 
{ ( ( x ) ,  < ( x ’ ) } = ~ ( y a - 2 m ) A ( x  - x f :  2m).  

(27) 

L 

The last of the commutation relations shows that the spin-i field has a negative metric in 
Hilbert space. 

The Feynman propagator of the field, defined as the vacuum expectation value of 
the time-ordered product, is easily evaluated in the usual manner. In the present case 
the normal-dependent terms cancel each other, and we rigorously have 

4. Interaction and pathologies 

We now discuss the interaction of the above described mixed spin-2-spin-i field with an 
electromagnetic field. To begin with, we consider the coupling to an external field. 

4.1. Causality of propagation 

Introducing minimal coupling into the Lagrangian ( 5 )  with the subsidiary condition 
unchanged we derive the gauge invariant field equation in the presence of an external 
electromagnetic field as 

(29)  
Taking into account the subsidiary condition (4) it is easily verified that 5 satisfies the 
equation 

(V + m)+, + A Y , ~ A * A  = ~,5. 

Expressing ( in terms of w*I,!I~ we can rewrite (29) in the form 

( y r  + m)+, - i y , r A * A  = 0. (3 1 )  
It is evident from this equation that the propagation character is unaffected by the 
coupling and that the characteristic determinant D ( n )  where n denotes a unit vector 
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normal to the wavefront, has the same value as in the free field case and is given by 

D ( n )  = +(n2)* (32) 
so that the propagation is light-like, and hence causal. 

4.2. Eigenvalues in a homogeneous magnetic field 

The method developed by Mathews (1974) is applied to determine the eigenvalues of 
the spin-; particle in a homogeneous magnetic field. Define 

r* = r1  * i r 2 ,  

Equation ( 3  1 )  with 
and 4- only decoupled from each other 

$* = CcI1 * W2, Y*=;(YI*iY*). 

= 1,2  can be manipulated to give two equations that involve $+ 

Ey4y+$+ + ~ ( Y + T +  + Y - ~ - ) Y - $ +  - ( ~ 3 ~ 3  - m)y+$+ = 0 
EYIY-$- + ~ ( Y + T +  + Y-T-)Y+$- - ( ~ 3 ~ 3  - m)r-$- = 0. 

(33) 

(34) 
With $+ partitioned in the form ($:), equation (33) becomes the pair of coupled 
equations 

( E  + m)a+x+ + (2eH)'/'(2au+(r- +a3a3a+)4+ = 0 

(E - m)a+4+ + (2eH)'/'(2ao+a_ + a3a3a+)x+ = 0 
(35) 

(36) 
where a = i(2eH)"'r+, a t  = i(2eH)'l27r-. The solutions of equation (35) are of the 
general form 

4+ = cllnlp) x+  = czln2P). (37) 
Substituting in-(35) and equating the coefficients of Ins) on both sides we obtain 
relations connecting c1 and c2 which can be written compactly as 

Hc = Ec (3 8) 
where 

The eigenvalues of H are readily found to be given by 

E 2  = m *[ 1 + (2eH/m '>a i ]  (39) 
The same procedure as above can be applied to equation (34). The components q3 and 
&, on the other hand, can be expressed in terms of ++, +- and their space-derivatives. 

5. Smatrix and unitarity 

In this section we examine the properties of the S matrix for the interaction of our spin-3 
field with a quantized electromagnetic field with the Lagrangian 

(40) L? = & 4 L u * u  + fY&W 4- &LYd - i F & y F c I Y  

where the conjugation is now taken to be that in an indefinite metric space. 
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Physical states are defined by the condition 

t'+'(x)lphysical) = 0 f(+'(x)(physical) = 0. (41) 

Because of the interaction of the negative metric particle, as is evident from equation 
(30), the S matrix defined in the physical subspace of the indefinite metric space will not 
be automatically unitary. However, following Hsu (1974a, b) we can restore the 
unitarity of the S matrix by introducing a fictitious particle and a new vertex. To show 
this we consider the scattering amplitude for the self-energy process +(p) + 
+(p - k ) y ( k ) +  +(p) which is obtained as 

where 

This contains an extra amplitude coming from 

-i 
+;m~uly,u:(P)G*,p * 

To remove this extra amplitude we introduce a fictitious spin-; particle F of mass 2m 
into the theory. If the interaction of the Fparticle has the form (G;yy(~,,  + imyY)FAw it is 
not difficult to verify that the extra amplitude is cancelled (in the second order) by the 
contribution from the process +(p) +F(p  - k ) y ( k )  + +(p).  It is conjectured that this 
cancellation is valid in all orders of perturbation theory. 

6. Conclusion 

The Lagrange multiplier formalism, though successful in eliminating some of the 
pathologies such as causality violation and existence of imaginary energy eigenvalues in 
homogeneous magnetic fields and the difficulties of quantization, leads to a multi-mass, 
multi-spin formalism with indefinite metric. This result seems to be in accord with the 
conjecture of Prabhakaran et a i  (1975) that for half-integer spins greater than ; 
causality in the presence of electromagnetic interaction may be retained only if we start 
with a free theory which is reducible, and wherein the total charge is indefinite. The 
notable fact is that the requirement that the subsidiary conditions remain separate leads 
naturally to such a formalism. Unlike in the Rarita-Schwinger case, the Feynman 
propagator turns out to be covariant in the present theory of a spin-; field. The results 
of this paper lend ample support to the currently popular view that if there exist 
fundamental high-spin fields, they must have a multi-mass multi-spin structure. Though 
an indefinite metric is inescapable in this approach, introduction of a further ghost field 
in the context of electromagnetic coupling serves to preserve unitarity of the theory. 
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